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The problem of controlling a parabolic system under conditions of uncertainty 
or conflict is analyzed. The problem is treated as a position differential game 
in a suitable functional space [l-3]. The controls occur in the boundary con- 

condition; the mechanism for developing these controls is described by an or- 
dinary differential equation. The constructions are based on an approachtopo- 
sition control problems in distributed-parameter systems given’in [3--51 (*). 

As in the case of ordinary differential equations [6] a procedure of control with 

a guide is constructed, yielding the solution of the problems being analyzed . 
The paper is closely related to the researches in [l-9]. 

1. Statement of the problem. Let a be a bounded connected open set in 
the Euclidean space R, and I’ be the boundary of Q. We assume that constraints (see 
[lo], pp. 212 and 222) ensuring sufficient smoothness of the solutions of the boundary- 
value problems to be examined have been imposed on domain 52 . We consider thecon- 
flict- controlled system 

aylat + Ay = f, in Q = (to, 6) X Q 

yIt=fo = yo, in Q 

yin = a (X)W (t), in II = (to. 6) X I? 

dwldt = B (t)w + C (t)u + D (t)u, w (to) = wo 

(1.1) 

(1.2) 

(1.3) 

where A is a self-adjoint elliptic operator of the form 
n 

Ay = - @j C5) 2 Y + a (5) Y ’ 
I 

(1.4) 

Here y, E Lt (Q) 1s a specified initial state, f E L2 (Q) is a specified perturbation 

a (x) is an m-dimensional vector function square-summable with respect to r; w is 
the m-dimensional phase vector of system (1.3) ; u and u are vector-valued controls 
of dimensions Zr and I, , respectively ; B (t), C (t) and D (t) are continuous matri- 
ces of appropriate dimensions. The functions u (.) (U (.)), Lebesgue measurable on 
[to, 61 , satisfying the following constraints (11 g 11 is the Euclidean norm of vector g): 

J, (u, tot 6) = (.i 1, u (t) j,pl dt)l”’ .< p (to) 
to 

(1.5) 

*) Osipov, Iu. S., Differential games in distributed parameter systems. Abstracts 
Third All-Union Conf. Game Theory. Odessa, 1974. 

194 



Differential encounter-evasion game 195 

P tto) < 00, V (to) < 00; 1 <pi ( 00, i = I, 2 

are called the admissible controls of the first (second) player. The variation of the con- 
straints p (t) and v (t) is determined by resources of controls u and u expended during 
the game 

PP1 @a) = p*‘(h) - JF (IL, t1, tz) (1.6) 

VP’(&) = vP’(t1) - JP (h t1, ta), t2 > t1 

A closed set M is specified in space L, (!iJ) . Find a method for selecting the control 

u (the control u) on the feedback principle, u [t] = u [t, 9, (.)I (V [t] = v [t, 
y, (.)I), developing the realizations u It] (V It]), Lebesgue measurable on [to, +] , 
and satisfyin; (1.3), such that the condition &3 ( a) E M (Ye ( .) @ M) for any ad- 
missible control u (s) (u (e) ) is satisfied. Here yr (.) = y (t, z), 5 E Q is the 
state of system (1.1) at instant t. 

Position control problems in such a setting were considered in [l- 51, wherein the case 
of instantaneous constraints on the controls was studied. The case of constraints (1.5) and 

(1.6) was studied also in [S] for controlled systems described by ordinary differentialequa- 

tions. In the present paper, as in [5], we study a parabollic controlled system in the pre- 

sence of constraints (1.5) and (1.6). It is sensible to treat the problems to be examined 
as problems of the optimal heating of body Q under conditions of uncertainty on the 

means of conducting heat to the body from some heat source distributed on boundary T 
and described by an ordinary differential equation. Problems of similar form arise, for 
example, when heating a metal under rolling or heat treatment (see [ll]). 

Let us make the problem statement more precise. By a solution of system (1.1) with 

selected y,, ws, u (t) and u (t) we mean the function yr (5) = y (t, s; y,, w,,, 

u (.), u (.) ) E L2 (0) satisfying the following integral identity [12]: 

8 

+ Arp)dxdt = $ fqdrdt + 

a 

” y, (2) cp (J‘, to) dx - i \ [a (1) w (t)] $ dI’dt 
1. I’ 

(1.7) 

Here w (t) is a solution of the integral equation 

w(t)=w,,-t J.B(r)w(r)dr+j.C(r)u(r)dr+J.D(r)u(r)dr (1.8) 
:r 10 1. 

Set X is provided with a topology induced by the topology of space H2’ r (Q) [12] 
H2g1 (Q) = {cpjq, dcp / at, Ap / 6’31, d2’p / ds&~ E L, (Q), i, j = 

1, . . ., n} 
The set of motions introduced isnot empty [12]. Using the expansion of solution Yr (5) 
with respect to the basis made up of the eigenfunctions of operator A, it can be shown 
that function yt (z) is continuous in t and has values in space Ls (a). The vector 
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r= {w,~, p,v},where we R m,~~,!&(~),y>Oandv>O,iscalledthe 
system’s state. The pairs {t, r), t e [f,, @] are called positions. Let A be a cover- 
ing of the interval [t,, 61 by the semi-intervals ]~i, ~t+~) of equal length 

6 =6(A) ==‘G 1+1 - Ti (to = To < Tl < * . . < ‘6&A) = 6) 

By knowning the system’s state at instant ‘Gi, i.e. r (pi) = {W (zi), yt; (.), p (Xi), 

v (IFS) ), the first (second) player selects on the sqmi-interval [Zip .Ci+l) a control 

~(*)(~(.)) d a missible for the position (zi, r (zi) } t i. e, 

JI f”Y ai* zi+J < p (^Gi), Js (u, Ti, zj+l) < Y (ai) 

Such a method of selecting u (v) is called a strategy U (V) of the first (second) player, 

The function y, (z)A = y (t, 2; wo, y,, p (to), v (to), u)A satisfying (1.7)iscalled 
the motion of system (1.1) from the position {t,, ws, go, p (to), v (Q}, correspond- 
ing to the partitio~ng A of the interval [to, 6] and to strafegy u . Here the control 

II is selected on the semi-interval [ri, lii+J by strategy U with respect to the position 

{Ti, W (‘rJi)g .?I,, (*), p (Ti), V (zi)} and u (*) . 1s an admissible realization of the se- 
cond player’s control. The motions y (t, 2; wa, ~a, p (to), v (to), v), are defined 
similarly. The problems set for the players are formalized as follows. 

The encounter problem. Construct the first player’s strategy U with thepro- 
pedy : for any e > 0 a positive number 6, can be found such that the inclusion 

&I (*)A 6i!f ME (Me is the closed e-neighborhood of set m) is accompLished for all 

motions yt (dA = y (& % wOy !/O, p (&I), v (to), u)A if only 6 (A) < 6s . 
The evasion problem. Construct the second player’s strategy J7 with the pro- 

perty: for any E > 0 a positive number &can be found such that the inclusion 

?#a ( -)A Ff MC is accomp~shed for all motions y, (z)A = 21 (t, 2; ws, ye, p (to), 

Y (to), v)A if only 6 (A) < &3. 

2, Let us describe the first player’s control procedure yielding a solution to the en- 
counter problem. This procedure is similar to the control with a guide procedure (see 

[Z, 61). By N we denote the space 

H = R, x Lz (52) x RI x RI 

with the norm 

Let z* = {t*, w*, y,, p*, vx} be some position of the game and v [t], t,<r < 6 

be a realization of the second player’s control, admissible for position z*, i.e. Ji (v, 
t,, @) < Y,. Following f63, by G(u) (z*, t*, u [. I), t* > t, we denote the set of 

points r (t*) = (w (t*), yt8 (.), p (t*), v (t*)}, where p (t*) >,u, v~* ft*) < 
yl- Jlpl (u, t*, t*), w (t) is a solution of Eq. (1.8) with u (t) and v [t]; yt* (z)= 

,“it*, S; y,, W*, u (*), V [*I), VP2 (t*) = Yepa - J,‘l (U, t,, t*). Here the u (q) 
are all possible summable functions satisfying the constraint Jr (4 r,, t*) \< p** 
By M* we denote the set 

Let a family of sets Nt, t,, < t < 6 , be given in space H . We say that the sys- 
tem of sets Nt is strongly u-stable if the condition 

G@) (& WI, ~1, tLlt %h tz7 0 (-)) n Nt, # 0 (2.2) 
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is satisfied for any tl and ts (ta < & < te & @), for any {w,, y,, pl, vl} E Art, 
and for every function u ( +) such that 2, fv, t,, ts) & vr. Let the function U* (z, z*, 

6) minimize the integral t*+s 

s Vu (t) dt (2.3) 
t* 

for Jlpl (u, t,, t, + 6) \< ppl - p*p’l p - p* > 0, If b/j + 0 and % (2, z*, 
6) =o when p-- p*\cit or when 11 b/l = 0. The function U* (z, z*, 6) maxi- 
mizes the integral t,--e 

s 
c’u (t) dt (2.4) 

for Jzps (u, t,, t, + 6) S& v*“-*~~*, v* - v >0, JIcIj # 0 and v*.(z, z*, 6)==0 
when Y* - Y & 0 or when /\cJ/ = 0. Here 

z = it*, WI Y, IL7 v), a* = {t*9 w*‘, y*, ct”! y*j 

6 > 0, b = (w - w*)‘C (t.J, c = (w - w*)‘l) (t*) 

(the prime denotes transposition). 

The following data are specified: the initial position z (t&== (t+, w*, ye, p*, V*j 
and a system of strongly u-stable sets Nt, t, < t < 6. We choose a position 

z* (t*) = {t*, w*7 y*, p*, Y*) E {t = t*) X Nt* 

arbitrarily, This is the position of an auxiliary motion, viz., of the guide (see [Z, 63 at instant 

t = t,. We select a covering A of the interval It,, 61 by a system of semi-intervals 

[xi, T~+J of equal length 6 = 6 (A) = T~+I - zi (t* = z. < ‘Q < a g . < 
x,(&) = 6). We assume that on the first segment [%a, ZJ the motion of system (1.1)- 

(I. 3) is generated by the first player’s control 

U(O) it1 I= u* (2 (t.), z* (t*), Q, a0 G t -=c 'tl 

in pair with a certain realization u it] of the second player’s control, admissible for the 

position z (t*), i.e. Jz (v, TV, ‘~1) & V*. The choice of these controls determines the 

reached at the instant t = rr. We select the guide’s position z* (aI) at the instant t = 

t, from the condition 

z* (‘GJ E (t = zl} x (G(“) ( {zo, w*, y*, p*, v*), lcl, u(O) ~~l)f’jIV~J 

20 I tl = u* (28 (t*), z* (t*)$ 6) 

Such a position can always be found because the system Nt is strongly u-stable (see 

(2.2)). 
The process of obtaining z (r) and z* (z) is repeated further, but now for t, = 71 , 

etc. I until the instant t = 6. The first player’s control 

&%A [+I== r& (2 (%i), z* (“di), a), ‘Gi < t < %i+l 
i=O,i,..., m(A)---1 

thus constructed does not violate the constraint J1 (r&A l-1, t*, @)& I+ The first 
player’s control with a guide strategy constructed relative to system NT is denoted by 
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system (1. l), (1.3) and the motion of the guide : it can be established that the choice 
of the contcols u, (z, z*, 6) and u* (z, z ** 6) ensures the proximity of these motions 
in the metcic \/*\\, f or a sufficiently small ~a~itio~ng step 6, By t:” (N,) we denote 
the first player’s strategy under which F, (to) = r, (to}. From Lemma 2. I follows 

Theorem 2.1. Let Nt # (ZI, t, & t < 6, Na C: M* and the system of sets 
Nt be strongly u-stable and let r (CO) = {wO, go, po, ~0) E Nt, ; then strategy 
u” {~~) solves the enc~~tec problem. 

3, Let us describe the procedure of the second player’s position control with a guide 
for solving the evasion problem. Let a system of sets Kt, to < t < @ , be specified in 
space N Similarly as in Sect. 2 we introduce the sets G(“) (z,, t*, u L - I), where Z*= 

(4W w*, YW P*, V*}, t* > t,, and we define the strong u-stability of system Kt. 
(It is only necessary to ~nt~cch~ge u and u and p and v in the defini~on in Sect. 2,) 
By u* (z, z*, 6) we denote the function maximizing integral (2.3) for JIP1 (u, 1,, 

t, + 6) & p*p* - pp*, p” - y*>O, ljbi#O and u*(z, z*,6) ==Owhen 
* - p (: 0 or when [b/l = 0. The function U* (z, z*, 6) minimizes integral 

(5.4) for S$* (0, t,, t, + 6) 4 VP* - v*p,, v - 

v * & 0 or%m I/ c 11 = 0 
V* > 0, llcll # 0 and Q. (2, z*, 

6) = 0 when v - The notation is the same as in Sect, 
2, For the strongly E-stable family Kt we define the second player’s contcol with a 
guide proceduce. The second player’s control is formed in the following manner: 

VA if] = v* (2 (z,), Z* (Zf), 6), 7i & t < “F&l = 71 -+ 6 (3.1) 

1=0,1 ,...,.m(A)--1 

Here z (‘51) is the game’s position realized at instant t = T-Z under the choice of con- 
tcol @A it] from (3.1) in pair with an admissible contcol u (t) (x0 < t < ‘ci) of the 
first player, i.e. J1 (u, zO, +zi) 6 p (zo); Z* (zi) is the guide’s position at instant 
t = ?;I. To determine the guide‘s position we use the controls 

u@l (t) = U* (Z (pi), Z* (Ti)> 6), pi 4 t<Ti+lr i ~0, 2, * * *% m(A)-’ 

As the initial positibn we select an arbitrary point of set Iif+ The s~cceedingp~itions 

of the guide ace determined from the condition 

2* (a*) E (t = 7ij x (G(U) (z* (zi-l), zf, d+lI (4 n q) 

up to the instant t = 6. Such points z* (To) always exist because system Kt is strongly 
y-stable. The control v,& ($1 constructed does not violate the constraints Js (VA [tl, $0, 
*) & v (to). The strategy P (Kt) is defied as in Sect, Z* 

In what follows we shall examine only those systems of s~ongly u-stable sets xt, 

to&t<@, focwhichKaCG*,where G* = ({w,y, p, yj ~Hlp>O,v> 
0, y E G, G = G c La(Q), G fl M = 0 } . There holds the *following 

The ore m 3.1. Let a strongly c-stable system Kt, t,, < E & 6 exist such that 

G@@¶ YOi CL07 %I E f’jf@, ; then strategy V" (K,) solves the evasion problem from the 

position (to, st’@$ yo, PO, vol. 

The proof is similar to that of Lemma 2.1 and of Theorem 2.1 for strongly &*-stable 
sets. The following statements concerning the solution of the evasion problem acevalid, 

Lemma 3.1. If the position z* = {t*, w*, y,, p2,, v*} belongs to some strongly 
u-stable family Kt, t, & t g 6, then an c-neighborhood of this position in space 
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H exists such that the evasion problem is solvable from any position in this c-neigh- 
borhood. 

The proof follows from the analogy of Lemma 2.1 for strongly v-stable sets. The va- 
lidity of the next statement can be proved by using Lemma 3.1. 

Le mm a 3.2. If the position zg = (t*, we, y*, p*, vy: } belongs to some strongly 
u-stable family Kt, t, & t < 6, then a strongly u-stable family Kt* exists such 
that Kt* wholly contains some a-neighborhood of point z*. 

Let us consider the following family of sets : K,(u) = U K t is the union of all strong- 
ly U.-stable families. We denote Nt = H \ K&v). There holds 

Theorem 3.2. Let Nt, # m ; then Nt # a, t, & t< fi ,and the system 
of sets Nt is strongly u-stable. 

The following theorem on the alternative implies from Theorems 2.1 and 3.2 and 
Lemmas 3.1 and 3.2. 

The ore m 3.3. Either the encounter problem or the evasion problem is always sol- 

vable for any initial position {t,, w,,, yo, po, YO } . The encounter (evasion) problem is 

solvable if and only if 

1% YO? cl07 %I E Nt, ({wo, Yo, PLO, vovg) @ N,,) 

N o t e 3.1. All the constructions considered above extend to the second and third boun- 

dary-value problems [U-13] for Eq. (1.1). Similar constructions are implementable for 
the case of instantaneous constraints on the player’s controls. The last of conditions (2.5) 

may be absent. Similar results are valid for systems with distributed controls of the form 

ay/at + AY = f + bu, + CVI 

where the constraints on controls u1 and ui are of type (1.5). Finally, we note that the 
results presented above hold for the problems of encounter and evasion by the instsnt 6 

(see PI) l 

The author thanks Iu. S. Osipov for posing the problem and for valuable advice. 
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