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The problem of controlling a parabolic system under conditions of uncertainty
or conflict is analyzed. The problem is treated as a position differential game
in a suitable functional space [1—3]. The controls occur in the boundary con-
condition; the mechanism for developing these controls is described by an or-
dinary differential equation, The constructions are based on an approachto po~
sition control problems in distributed-parameter systems given'in [3—5] (¥).
As in the case of ordinary differential equations [6] a procedure of control with
a guide is constructed, yielding the solution of the problems being analyzed .
The paper is closely related to the researches in [1—9],

1, Statement of the problem, Let Q be abounded connected open set in
the Euclidean space R, and I' be the boundary of . We assume that constraints (see
[10], pp. 212 and 222) ensuring sufficient smoothness of the solutions of the boundary-
value problems to be examined have been imposed on domain ) . We consider the con-
flict-controlled system

dylot + Ay = f,in Q = (&, ) X Q (1.1
Yli=t, = Yo, in L (L.2)
yleg = 2 (@w (£),in S = (&, ¥) X T

dw/dt = B (tyw + C (t)u + D (t)v, w () = w, (L.3)

where A is a self-adjoint elliptic operator of the form

Ay = 0 ” a . 1.4)

v==3, (% @ g 1) +a@y (L.
ii=1
Here yo & L, (Q) is a specified initial state, f = I, (Q) is a specified perturbation
a (x) is an m-dimensional vector function square-summable with respect to I'; w is
the m~dimensional phase vector of system (1.3); u and v are vector-valued controls
of dimensions /, and I, ,respectively; B (t), C (t) and D (t) are continuous matri-
ces of appropriate dimensions, The functions u () (v (-)), Lebesgue measurable on
[t,, ©] ,satisfying the following constraints (| g| is the Euclidean norm of vector g):
&

9 1/p1
Tt ®) = ([ u @) <pito) (1.5

to
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(1201 t0 9= ([l oprae) ™ < v(to))

to

P'(to)<°°,v(to)<00;1<p,<oo, l=1’2

are called the admissible controls of the first (second) player, The variation of the con-
straints | (¢) and v (2) is determined by resources of controls & and v expended during

he ¢
the game pr (tz) — ppx (tl) _ Jf‘ (u, t, tz) (1. 6)
VP (te) = VP (L) — IRt t), >

A closed set M is specified in space L, () . Find a method for selecting the control
u (the control v) on the feedback principle, u [t] = u ¢, y, (*)] (v[t] = v (¢,
Yt (+)]), developing the realizations u [t] (v [¢]), Lebesgue measurable on [¢,, 9],
and satisfyiny (1, 3), such that the condition yg () € M (ys (+) & M) for any ad-
missible control v (-) (u () ) issatisfied. Here y, (-) = y (¢, 2), s E Q is the
state of system (1.1) at instant ¢,

Position control problems in such a setting were considered in [1=—5], wherein the case
of instantaneous constraints on the controls was studied, The case of constraints (1,5) and
(1.6) was studied also in {6] for controlled systems described by ordinary differentialequa-
tions, In the present paper, as in [5], we study a parabollic controlled system in the pre-
sence of constraints (1, 5) and (1, 6), It is sensible to treat the problems to be examined
as problems of the optimal heating of body @ under conditions of uncertainty on the
means of conducting heat to the body from some heat source distributed on boundary T
and described by an ordinary differential equation, Problems of similar form arise, for
example, when heating a metal under rolling or heat treatment (see [11]).

Let us make the problem statement more precise, By a solution of system (1, 1) with
selected Yo, Wy, u (t) and v (t) we mean the function y, () = y (¢, x; Yo, Wo,
(), v(')) & L, (Q) satisfying the following integral identity [12]:

8

§§y,(x)(—-—a§+Aq;)dxdt=8§)f(pdrdt+ (1.7
[ . fo
§yo () @ (, to) dx — >> la () w(t)] fv—‘i dr dt

Vo= X = {gp|loE H>' (Q); ¢|lz =0, ¢(z, 9) =0, zE Q}

Here w (i) is a solution of the integral equation
t t t
w(t) = wy -+ j B(t)w(r)dt + j C(Nu(r)dt + S D(t)v(t)dr (1.8)
i fo le

Set X is provided with a topology induced by the topology of space H*» ! (Q) [12]
H%1(Q) = {oly, 09 / dt, 3¢ / 0z, 0% / 0x:0z; = L, (Q), i, j =
1, ..., n}
The set of motions introduced isnot empty [12]. Using the expansion of solution ¥ (x)
with respect to the basis made up of the eigenfunctions of operator A, it can be shown
that function y, () is continuous in ¢ and has values in space Lg (). The vector
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r={w, y, @ v} where w & Ry, y € Ly, (Q), p > 0 and v > 0 ,is called the
system's state, The pairs {Z, 7}, £ & [¢,, 9] ate called positions. Let A be a cover-
ing of the interval [to, 4] by the semi-intervals Iti Ti4q) of equal length

626(A)=Ti+1—"'§i (tO:T0<T1<-4-<Tm(A)='&)

By knowning the system's state at instant T, i.e. 7 (7;) = {w (7), y, (), M (¥1),
v (1;)}, the first (second) player selects on the semi-interval [T;, T;4;) a control
u () (v (+)) admissible for the position {v;, r (t;)} ,i.e.

I (U T Tiag) KB () o (9, Ty Tisn) SV (T0)

Such a method of selecting u (v) is called a strategy U7 (V) of the first (second) player,
The function y,; (2)a = y (L, x; wq, Yo, ¥ (&), v (&), U)a satisfying (1, 7)iscalled
the motion of system (1. 1) from the position {£,, Wy, Yo, 1 (Zo), v (%o)}, correspond-
ing to the partitioning A of the interval [#, 8] and to strategy [/ . Here the control
u is selected on the semi-interval [t;, 1;4,) by strategy [/ with respect to the position
{ti, w (v4), Y=, (+) B (v4)y v (vs)} and v (-) is an admissible realization of the se~
cond player's control, The motions y (¢, ; Wy, Yo, 1 (%), v (&), V)a are defined
similarly, The problems set for the players are formalized as follows,

The encounter problem, Construct the first player's strategy [/ with the pro-
perty: for any & > 0 a positive number §; can be found such that the inclusion
Yo (-)a & Me (M?* is the closed e-neighborhood of set M) is accomplished for all
motions ¥ (z)a = ¥ (¢, &5 wo, Yo, B (L), v (L), U)a ifonly § (A) < § -

The evasion problem, Construct the second player's strategy ¥ with the pro-
perty: for any & >> 0 a positive number 8gcan be found such that the inclusion
Ys (+)a € Me is accomplished for all motions y, (z)a = y (£, Z; Wy, Yo» B (&),
v (t), V)a ifonly 8 (8) < 8.

2, Let us describe the first player’s control procedure yielding a solution to the en-
counter problem, This procedure is similar to the control with a guide procedure (see
[2, 61). By H we denote the space

H=R, X L, () X By X R,
with the norm o . A
1w, y» w, Y = (wik,, + ¥l + 82+ )
Let 2, = {l4, Wy, Yuo Py Vi } be some position of the game and v [£], £, <t << @
be a realization of the second player's control, admissible for position z,, i.e. J, (v,
Ler @) < V. Following [6],by G® (z,, t*, v [.]), t* > ¢, we denote the set of
points r (£%) = {w (£*), yie (+), p (%), v (£*)}, where p (%) >0, p* (%) <
pr — Ji* (u, ty, t*), w (1) is a solution of Eq, (1,8) with u (£) and v [t}; ys (2)=
Y (%, 25 Yo Wy w (), 0 [-D), vP (#*) = v*p, — Sy (v, e, t*). Here the u (-)
are all possible summable functions satisfying the constraint J, (u, ty, t*) <X Py
By M* we denote the set

M*= {{w,y, , VIEH|yE M, p >0, v >0} (2.1)

Let a family of sets Ny, £, < ¢ <C ¥ ,be given in space H ., We say that the sys-
tem of sets V; is strongly y -stable if the condition

G™ ({th Wy, Y1, K1y vl}» ty, U (‘)) ﬂ Nt: +* @ (2.2)
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is satisfied for any ¢ and I (f) < & < £, < 0), for any {wy, s, P, v1} E Ny
and for every function v {-) such that J, (v, ¢, t,) < v,.Let the function u, (z, z*,
§) minimize the integral tt8

b'u (t)dt (2.3)
for JyPs (u, by, ty + 8) < pr— p,*p’, p—u* >0,]b]#£0 and u, (z 2%,
8) = 0 when p — p* <0 or when |[b] = 0. The function v* (z, z*, §) maxi-
mizes the integral totB

S cv{t)dt (2.9
te
for JoPs (v, by, te + 8) < VAP Pk oy, [ e]l 5= 0 and v*{(z, z*, §)==0
when v*  § < 0 or when ﬁci} = {J. Here

Z == {t*a W Y, Wy V}s z* = {tHﬁ W*x y*v !l*; V*}
8§>0,b=(w—w*)C(t), c=(w—w*)D(ty)
(the prime denotes transposition),
The following data are specified: the initial position 2 ()= {f4, Wy, Yur Mas Vi)
and a system of strongly u-stable sets N, £, < ¢t < @. We choose a position

2* () = {ts, W*, y*, p*, v} E {t = £} X Nuw

arbitrarily, This is the position of an auxiliary motion, viz. , of the guide (see [2, 6]) atinstant
t = Ly. We select a covering A of the interval [£,, &] by a system of semi-intervals
[1i, Tisy) ofequallength § =8 (A) =Ty —Til(ly =T < <. .. <
Tmia) = ¥). We assume that on the first segment [t,, T,) the motion of system (1.1)—
(1.3) is generated by the first player's control

wO [2] = uy (2 (2e)y 2* (84), 8, Tot<y

in pair with a certain realization v [¢] of the second player's control, admissible for the
position z (£}, i.e. Jy (U, To, T1) << V4. The choice of these controls determines the
game's position

z (1‘-1) == {t].’ w (Tl)ﬂ Yy (')3 | (Tl)y v (Tl)}
reached at the instant ¢ = 1,. We select the guide's position z* (7;) at the instant {=
T; from the condition

2* (1) € {t =7} X (6% ({ve, w*, ¥*, p*, v¥}, 7y, VO D1 N:)
v [t] = v* (2 (8,), 2* (L), O)
Such a position can always be found because the system N is strongly u-stable (see
(2.2)).
The process of obtaining z () and z* (t) is repeated further, but now for £y = 11,
etc, ,until the instant # == §. The first player's control

wa ltl= u, (z (1), 2* (1:), 8), T <t T
i=0,1,..., m{A)—1

thus constructed does not violate the constraint J, (ua [+, ty, 9)<C Hy. The first
player's control with a guide strategy constructed relative to system N is denoted by
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UN:)=TU (Tis Tivs 11 (T2)s 72 (1), N-)
where
I (te) = {Wa Yar B Ve ) T2 (y) = {w*, y*, n*, v*}
Let {o;} be a fixed sequence of numbers, possessing the following properties (see the
analogous constructions in [5]):

l<ao;<1 (2.5)
= oo, | .
N 00, a;?h? < oo
;“J v, L;(I‘)< ;I At <

Here ®;, A; is a solution in space H! (Q) of the following spectral problem [10, 12,

13]:
J: Ao = Ao, o|p =0 (2.6)

For simplicity we assume a> 0 (see (1.4)). By virtue of the constraints imposed on
the operator A (see [10, 13]) and on domain Q (see [10]) problem (2. 6) has a solution
from H,' (Q) N H?(Q) for a denumerable number of values of A, and [10]

1) the jjarereal, <My <. .. <A, <..., Aj— o0 as j— oo;
2) S‘m,ﬂdx=1 and fcojmkdx=0 for j = k;
A !

3) the @; form a basis in L, (Q) and in Hy! ().

Sequences (2.4) exist because by the theorems on traces [12, 13] the function dw; /
dva € Ly ().

Note 2.1, In contrast to the conditions in [5] on the numbers {a;}, here we intro-
duce an additional assumption (the last inequality in (2,5)), This is necessary because
the constraints on the control resources now are integral,

By |-[, we denote a new norm in space L, () defined as follows:

oo 1/'
1Vl = (3 o <u, 03?)
In space H we introduce the norm
17k = 1w, 9, 1 VYo = (i, + [y]a? + 12 + )"

By M,* we denote the set {p € L, (RQ)|, m (¢) & M can be found suci that
lo — m (¢)le < &}. The following lemma is valid,

Lemma 2,1, Let Ny = (), t, < t < @, No (C M*, and the system of sets V¢
be strongly u-stable; then tor any positive number g >> ( we can find numbers 6(e)>
0 and P (g) >> 0 such that for all motions

Y (x)A =Y (.’L‘, t; tOv Wy, Yo4 Wos Vo U (N't) )A
there holds the inclusion yo (-)a€ Ma* if only § (A) < 8 (e) and |y (o) —
7‘2 (to)"a < ﬁ (8), Here
r () = {wo, Yoo Mo Vol 7o (t) = {wo*, -¥o™, Ho*, o™}

is the guide's state at instant ¢ = ¢,.
The lemma's proof is based on the estimate of the distance between the motion of
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system (1, 1), (1. 3) and the motion of the guide: it can be established that the choice

of the controls u, (z, z*, §) and v* (z, z*, §) ensures the proximity of these motions

in the metric |-Jo for a sufficiently small partitioning step 8. By U° (N.) we denote

the first player's strategy under which ry (ty)= 13 (#). From Lemma 2, 1 follows
Theorem 2.1, Let Ny 5= (7, &) < t <9, Ny M* and the system of sets

N, be strongly u-stable and let r (&) = {wg, Yo, Lo, Yo} & Ny, ; then strategy

U° (N+) solves the encounter problem,

3. Let us describe the procedure of the second player's position control with a guide
for solving the evasion problem. Let a system of sets K, £, < ¢ < ¥ ,be specifiedin
space H Similarly as in Sect, 2 we introduce the sets G (z,, t*, u |-{), where z2,=
{er W Yao Wyy Vi), 1% > t,, and we define the strong v-stability of system 4.
(It is only necessary to interchange u and v and W and v in the definition in Sect. 2,)
By u* (2, z*, 6) we denote the function maximizing integral (2.3) for J;™ (u, ¢,
te + 8) L p¥Pr— pP, p* — >0, |b] % 0 and u* (z, z*, 8) = O when

p* — 0 or when b| = 0. The function v, (z, z*, §) minimizes integral
(2.4) for  JP+ (v, ty, ty + 8) < VPt — v¥Pr v — ¥ 0, |c] 5= 0 and vy, (2, 2%,
8) = 0 when v — v* < 0 orwhen [¢] = 0 The notation is the same as in Sect,

2, For the strongly y-stable family K, we define the second player's control with a
guide procedure. The second player's control is formed in the following manner:

valtl = v, (3(vy), 2* (1), §)y, i Lt<Tiy =7+ 8 3.0
1=0,1,..., m(A)—1

Here 2 (i) is the game's position realized at instant £ = T; under the choice of con-~

trol va [} from (3, 1) in pair with an admissible control u (£) {1, << ¢ << 7;) of the

first player,i.e. J, (U, To, Ti) << P (T¢); 2* (T:) is the guide's position at instant
= 13 To determine the guide's position we use the controls

ulil () = u* (Z (Ti)i z¥ (Ti)a 8), t; L <] Ty ¥ =0,1, ... m(A)—-—-1

As the initial position we select an arbitrary point of set K,,. The succeeding positions
of the guide are determined from the condition

z* (Ti) e {t = Ti} X (G(”) (2* (Ti"l)y Tis uli-1l (')) ﬂ K‘!i)

up to the instant ¢ = Q. Such points z* (t;) always exist because system K is strongly
v-stable, The control va [#] constructed does not violate the constraints J, (va (2], $o»
$) < v (8,). The strategy V° (K-) is defined as in Sect. 2,
In what follows we shall examine only those systems of strongly v-stable sets K,
to < t < O, for which Kg (C G*, where G* = {{w, ¥, p, v} €S Hlp>0,v >
0, yEG, G =G C Ly (Q), GV M = J}. There holds the following
Theorem 3.1, Let astrongly v-stable system Ky, ¢, < < @ exist such that
{wos ¥o» o» W} € K,,, ; then strategy V° (K-) solves the evasion problem from the
position {£,, We: Yo» Hos o}
The proof is similar to that of Lemima 2, 1 and of Theorem 2, 1 for strongly v~stable
sets, The following statements concerning the solution of the evasion problem are valid,
Lemma 3.1, If the position Zy == {ly4, W, Yg» Mg, V4 ) belongs to some strongly
v-stable family K, f, << t < ¥, then an g-neighborhood of this position in space
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H exists such that the evasion problem is solvable from any position in this &-neigh-
borhood,

The proof follows from the analogy of Lemma 2, 1 for strongly v-stable sets, The va-
lidity of the next statement can be proved by using Lemma 3, 1,

Lemma 3.2, If the position z, = {f,, W4, Ys> Wy, V4 belongs to some strongly
v-stable family K;, t, < ¢ <C ¥, then astrongly v-stable family K ,* exists such
that K,* wholly contains some &-neighborhood of point z,.

Let us consider the following family of sets: K,(® = | K, is the unionof all strong-
ly v-stable families, We denote Ny = H \_ K. There holds

Theorem 3,2, Let Ny = (f; then Ny 5= (f, t, < t < © ,and the system
of sets V; is strongly u-~stable,

The following theorem on the alternative implies from Theorems 2, 1 and 3.2 and
Lemmas 3,1 and 3,2,

Theorem 3,3, Either the encounter problem or the evasion problem is alwayssol-
vable for any initial position {t,, wy, Yo, Ho» Vo}. The encounter (evasion) problemis
solvable if and only if

{wo, Yoy Mo VO} & N, ({wo’ Yos Mo VO} & Nu)

Note 3.1, Allthe constructions considered above extend to the second and third boun-
dary-value problems [11—13] for Eq, (1. 1). Similar constructions are implementable for
the case of instantaneous constraints on the player's controls, The last of conditions (2.5)
may be absent, Similar results are valid for systems with distributed controls of the form

dylot + Ay = [+ buy + ey

where the constraints on controls u, and v; are of type (1. 5). Finally, we note that the
results presented above hold for the problems of encounter and evasion by the instsnt ¢

(see [2]).

The author thanks Iu, S, Osipov for posing the problem and for valuable advice.
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